美国国家工程院外籍院士、北京智源人工智能研究院理事长张宏江,在2022人工智能合作与治理国际论坛的主题论坛“人工智能引领韧性治理与未来科技”上发言。主办方供图
张宏江认为,回顾人类科学发展的历史,不同发展阶段经历了不同的科学发现范式。
“几千年前,人类就通过观察、实验来描述自然现象。比如‘日心说’是通过对天象的观察来对整个宇宙。随着科学的发展,四五百年前,理论模型范式出现。人们通过对某一现象的观察总结出理论,从而指导新的科学研究。五六十年前,尤其当大型计算机出现后,面临更复杂的问题,比如天气预报、地震模拟,人们无法再用简单的物理公式、简单的方程构建完整的模拟系统研究理论,人们引入了计算范式,用计算来模拟的方式做科学研究。到二十年前,我们进入大数据时代,科研中积累的大量数据可以进一步驱动物理模型。”
“今天,我们进入了一个新的科研范式。”张宏江说,人工智能经过多年发展,尤其过去15年深度学习的发展,使得人们能够给科学研究推出一个新的范式。“这个范式是AI驱动的范式。实际是用深度学习的算法,直接从数据中建立新的模型,其背后是数据、模型、算法和算力。”
张宏江指出,深度学习在革命性地推动了语言、图像和视频处理、识别和应用之后,正在迅速地改变科学研究的范式,这种新的范式就是物理世界的“数字化+自动化+深度学习”。
他说,“今天我们进入了一个黄金期,新的设计范式,都可以借用深度学习的方法进行赋能。”
张宏江坦言,未来十年蕴含着科学发展与产业创新机会,包括数据、模型、算法、算力,其核心是背后的跨学科人才。(完)
人工智能应用于更多领域 计算机研究深入光电结合****** 英国科学家在人工智能(AI)领域取得多项突破,包括用AI首次控制核聚变、用AI预测蛋白质结构等。“深度思维”与瑞士洛桑联邦理工学院合作,训练了一种深度强化学习算法来控制核聚变反应堆内过热的等离子体并宣告成功,有助加速无限清洁能源的到来。“深度思维”凭借“阿尔法折叠”算法,预测了迄今被编目的几乎所有2亿多个蛋白质的结构,破解了生物学领域最重大的难题之一,有助于应对抗生素耐药性,加速药物开发并彻底改变基础科学。该公司研发的“DeepNash”(深度纳什)学会了在“西洋陆军棋”游戏中,使用虚张声势等欺骗手段来击败人类对手。该公司AI创建的高效数学算法能解决矩阵乘法问题。该公司AI通过模拟数十年足球比赛的情况,学会了熟练地控制数字代理足球运动员,其建模的“AI代理”可与其他人工代理沟通合作,在玩游戏时共同制定计划。 牛津大学研究显示,AI能模拟条件反射进行联想学习,比传统机器学习算法快千倍。利兹大学科学家借助AI扫描视网膜以探知心脏病风险。 在计算机相关领域,牛津大学研究人员开发了一种使用光偏振来实现最大化信息存储密度的设备,其计算密度比传统电子芯片提高了几个数量级。南安普顿大学工程师则与美国科学家携手,设计了一种与光子芯片集成的电子芯片并创造出一种设备,能以超高速传输信息同时产生最少的热量。 在机器人领域,利兹大学团队开发了一种“磁性触手机器人”,直径只有2毫米,可由患者体外的磁铁引导进入肺部狭窄的管道采样。帝国理工学院科学家展示了一组受动物启发的飞行机器人,可在飞行中建造3D打印结构,未来有望用于在偏远地区建造房屋或重要基础设施。格拉斯哥大学科学家将由砷化镓制成的微型半导体打印到柔性塑料表面,所得设备的性能可与目前市场上最好的传统光电探测器媲美,且能承受数百次弯曲,可用作未来机器人的智能电子皮肤。苏格兰科学家开发出了一种先进的压力传感器技术,有助于改进机器人系统,如用于机器人假肢和机械臂。(科技日报记者 刘霞) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |